Übungsaufgaben H 15

1. Aufgabe

Die Fieberkurve eines Patienten kann in den ersten drei Beobachtungstagen durch folgende Funktion beschrieben werden:

$$f(t) = -0.1t^4 + 0.8t^2 + 38.4$$
 $t = [0.3]$

$$t = [0.3]$$

$$f(t) = Temperatur; t = Zeit$$

- a) Geben Sie die Temperatur zu Beginn der Behandlung an.
- b) Ermitteln Sie den Zeitpunkt, an dem die Temperatur am höchsten ist.
- c) Berechnen Sie, wann der Patient wieder die Temperatur von 37,5°C erreicht hat.

2. Aufgabe

Ein wildlebendes Kaninchenvolk wird 6 Jahre lang beobachtet und gezählt. Die Zuund Abnahme der Population in dieser Zeit kann beschrieben werden durch die Funktion $f(t) = -2t^3 + 18t^2 - 30t + 90$. t in Jahren; f(t) = Anzahl der Kaninchen

- a) Geben Sie an, wie viele Kaninchen sich zu Beginn der Beobachtung im Volk befanden.
- b) Berechnen Sie den Zeitpunkt der größten Population.
- c) Untersuchen Sie, um wie viele Kaninchen sich die kleinste von der größten Population unterscheidet.
- d) Ermitteln Sie die Zunahme an Kaninchen im Beobachtungszeitraum.

3. Aufgabe

Die Funktion $f(t) = \frac{1}{8}t^4 - t^3 - t^2 + 12t + 20$ gibt den Gewinnverlauf eines Spielers beim Roulett an. t in Stunden [0;6]; f(t)= Euro (in Tausend)

- a) Geben Sie an, wie viel Euro der Spieler zu Beginn in Jetons wechselte.
- b) Berechnen Sie den höchsten Gewinn. Berücksichtigen Sie dabei den Einsatz.
- c) Der Spieler gibt nach 6 Stunden seine Jetons zurück. Ermitteln Sie, wie viel Euro er dafür erhält. Hat er Gewinn oder Verlust gemacht?

4. Aufgabe

Die Änderung der Bevölkerungsdichte einer europäischen Stadt seit dem Jahr 2000 kann man näherungsweise mit Hilfe der Funktion $f(x) = -0.2x^3 + 0.6x^2 + 1.8x + 3218$ beschreiben.

- a) Berechnen Sie die maximale Bevölkerungsdichte, die seit dem Jahr 2000 gemessen wurde.
- b) Ermitteln Sie die Bevölkerungsdichte, die im Jahr 2010 zu erwarten ist.
- c) Bestimmen Sie das Jahr, in dem wahrscheinlich die niedrigste Bevölkerungsdichte vorlag.